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PREFACE

This report presents the results of an investigation performed in

the Materials Engineering Research Laboratory at the University of Illinois.

The principal investigator was Dr. Jo Dean Morrow with associate investigators

D.F. Socie and Peter Kurath. The program was administered by the Air Force

Flight Dynamics Laboratory, Air Force Systems Command, Wright-Patterson Air

Force Base, Ohio under Project 2307, "Flight Vehicle Dynamics," Task 2307NI,

"Research on the Behavior of Metallic and Composite Components of Airframe

Structures." Financial support for this work was provided by the Air Force

Office of Scientific Research under grant AFOSR 77-3195. Mr. Robert M. Engle

(AFFDL/FBE) was the Air Force project engineer.

The research was conducted f-om February 1977 through July 1979.
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SECTION I

INTRODUCTION

1. Background

Fatigue life estimates for notched members have been the subject of

researzh for a number of years. Early investigators measured the endurance

limit of notched and unnotched specimens and concluded that, in fatigue,

notches have less of an effect than that predicted by the theoretical stress

concentration factor, Kt. As a result, a fatigue notch factor, Kf, was

introduced as an effective stress concentration factor in fatigue. A

number of empirical relationships betwee Kf, Kt and notch size have been

proposed (1,2). Topper et al. (3) extended this work to include the finite

life region by employing Neuber's rule (4) to calculate elastic and plastic

strains at the notch root. The appropriate value of Ef that should be em-

ployed in life prediction procedures was found to depend on nmaterial, load

level, load history and the definition of failure (specimen separation or

a crack of some arbitrary length) (5). The methods have been extended to

I estimate the life under variable amplit,,de load histories (6,7).

Use of these methods is teamed a crack initiation analysis, because they

'4 estimate the nunber of cycles to initiate a crack of engineering significance.

The crack propagation portion of the life is ignored in these methods, although

it does influence the precise value of Kf emloyed. The relative fraction of

the total fatigue life spent in propagating a crack is assund to be saall.

In m3ny cases this assumtion is not ji'stified '8). Nevertheless. t0

1 ~procedures have found widespreMd industrial application.

Since Paris (9) showed that tne fatigue crack growth rate is a funcLion

of the cyclic stress irtensi.y, several investigators have shown how to apply

I'I

I . . . -- ** - _ - -•• ? _ •



fracture mechanics concepts to estimate the crack propagation life of

notched structures subjected to variable amplitude load histories (10-12).

These methods integrate the crack growth rate from an initial crack size to

some critical crack size to obtain the crack propagation life. Crack initia-

tion and early crack growth stages of the total fatigue life are ignored.

As a result, these methods are limited to problems that have pre-

existing fatilue crack flaws. In an effort to estimate the total fatigue

life of fastener holes, Potter (13) postulated an equivalent initial flaw

size. It is determined by calculating the initial flaw size that would be

required to give the total fatigue life of a laboratory specimen if the

crack growth rate was integrated. The equivalent initial flaw size is not

a constant, since it depends on the material, notch size, load level and

loading history. As a result, the concept cannot be applied to different

components or load histories without experimental data. El Hadad et al.

(14) proposed a model to explain the growth of short cracks by introducing

an intrinsic defect size that is constant for a given material. It is deter-

mined from the smtooth specimen endurance limit and threshold stress intensity

factor.

Recently, several investigators have calculated the total fatigue life

by employing both crack initiation and crack propagation concepts. Initial
,' .S in.

crack sizes for the propagation analysis are assumed to be between 10

and 10 in. in the discussion of their work, Nelson and Fuchs (11) postu-

lated that the fatigue damage, due to crack initiation of an arbitrary
4

* clement, located along the potential crack path, decreases as the distance

fr•, the notch root increases. Fatigue damage, due tw Oropagation, increases

, as the distance from the notch root increases. The intersection of the two

2
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damage curves may be considered as the demarcation between crack initiation

and propagation. Methods for calculating the damage due to each mechanism

were not described. Smith and Miller (15) proposed that the crack growth

near the notch is a function of the plastic strair. range and also decreases

as the distance from the notch root increases. The crack growth rate, as a

function of the cyclic stress intensity, increases as the distance from thL

notch root increases. The two rates intersect at some distance from the

notch root. Later, Hanmnouda and Miller (16) proposed that the growth ,Ate

of cracks near the notch should be described by elastic-plastic fra'ture

mechanics concepts. Crack growth is determined by the interaction of

plastic zone at the crack tip and the plastic zone near the notch.

Based on the elastic stress intensity solution for a small crack growing

in the notch stress field, Dowling (17) suggests that a crack is initiated

when it reaches a length equal to 20 percent of the notch root radius. Strain

cycle fatigue concepts are employed to calculate the initiation life and iinear

* elastic fracture mechanics methods are used to determine the propagation life.

S '4 He provided a computational method and experimental data for 4340 steel with

two notch geometries. Socie et al. (18) proposed a model for determining a

nonarbitrary transition crack size by assuming that strain cycle fatigue

mechanisms control the initial crack development until the crack propagation

* 0.rate exceeds the crack initiation rate of elemients along the potential crack

path.

2. Purpose and Scope

The goal of this program was to utilize the concept of a nonarbitrary

fatigue crack size in a working comuter algorithm for predicting total

fatigu,! lives. A test program ervloying various nftches in plate specimens

IV was pe "formed to detertline the viability of the concept.

3
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SECTION II
ANALYSIS

1. Basic Concepts

Low cycle fatigue formulations have been successfully used to estimate

crack initiation lives of notched members (6-8). Basically, if the local

stresses and strains are known, initiation life can be related to fatigue data

obtained from smooth laboratory specimens. Fatigue recistance of metals is

usually characterized by a cyclic strain-life curve. Smooth specimens tested

to failure under fully-reversed constant amplitude strain control provide

these curves. The relation between strain amplitude and reversals to failure

is usually represented in the following form:

2 q (2Nf) + f (2Nf)b

To account for the presence of a mean stress, the strain-life equation may be

modified to the following form:

AE:c b•.- =•,(2Nf) + (o 0- o) (2Nf)
2 =f f E (2)

J Fatigue crack propagation under constant amplitude loading is most frequently

represented in the form proposed by Paris (9).

" I da - C,(AK) m  (3)

There have been numerous modifications of this basic form (19-21) to account

4 for medn load, sequence, and crack closure effects. Final crack sizes are

determined from fracture mechanics concepts and the appropriate fracture

toughness data. Propagation lives can be calculated by integrating Eq. 3,

4
,'R,
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Npda
a V(týK) (4)

Initial crack sizes, ai, assumed in the literature, range from approxi-
.5

mately 10 to 10 inches. This range in ai can affect the calculated propa-

gation lives by orders of magnitude. Also, the assumed value of aj may influ-

ence the total fatigue life estimates in a similar manner.

In this research, crack initiation life was represented in terms of low

cycle fatigue concepts as described in Appendix B, while using a Forman (22)

description of crack propagation:
da - C" AKm'

"dN (I R)K c -AK (5)

Equation 5 accounts for mean load effects in terms of the ratio of

minimum to maximum load, R. Propagation, as described by Forinan, is in

ternic of a cyclic rate of damage criterion, while strain cycle fatigue data

* .i are generally presented as total cycles to failure. To change these two

mowdels (Eqs. 2 and 5) into comparable forms, the low cycle fatigue life data

are converted to a rate of initiation damage. It is assumed that for some

number of cycles the initiation rate dominates, while propagation behavior

controls during the later portion of fatigue life. A nonarbitrary crack

initiation length, ai, is defined to be the point where the two rates reach

the same value. This method of detenrining ai w•ll be referred to as the

intersecting rate analysis. Another equally valid approach to defining ai,

which will be referred to as the minimum life estimate, is to predict the

total life from initiation and propagation models as before for various

54 .



values of x in Fig. 1. At some distance from the notch the calculated total

life will be a minimum, and this value defines ai

2. Details uf Implementation

Imagine a series of microfatigue elements ahead of a notch root (Fig. la),

considering them to simulate smooth fatigue specimens. From the stress and

strain distributions (Fig. lb, lc) for the notched plate obtained by using

a finite element analysis, or mathcmatical formulation for a finite width

notched plate, ore ca," assign cyclic stresses and strains to the various

* Ielements. Finite element methods applied to this problem are discussed in

(23). Finite width plate mathematical formulations invulve elastic stresses

j and strdins, whereas most problems at notches involve some degree of plasticity.

It is possible, given the nominal stresses and local elastic stresses

and strains, to estimate the elasto-plastic stresses and strains using Neuber's

rule (4) as follows:

(AS Aa A

4E -~(6):4: S4E 2 2

"The value of AS defines the local elastic stress range for a given element
x

"a distance x from the notch root. Combining this information with Hook's

law for elastic strains and a power law for plastic strains,

I2 2?E t2K' ()
results in the following relation.

(AS• x (^Sx) Ao + I/n'-7y • T TC ÷ M
This equationi can be solved rather easily by iterative procedures using a

computer. Smooth specimen fatigue lives are then assigned to the various elements

6
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as described in Appendix B (Fig. Id). It is then possible to construct a

curve with the dimensions of life versus position on the x axis (Fig. le)

For the minimum life prodecure, the initiation life is defined as the value

of the fatigue life of the element at the position x = ai. The reciprocal

of the derivative of the life with respect to x can be calculated by numerical

methods at various points along the x axis resulting in dx/dNf versus distance

from the notch root (Fig. If). In this way strain cycle data are converted to

a rate form for the intersecting rate analysis.

Yet another method to procure an initiation life estimate Is to use

Neuber's rule in conjunction with Peterson's (24) relation.

K - l
Kf l + a*

1 +•
r

This calculation wi:s dOne merely for comparison with the previous two methods.

Similatly, crack prop.gation data are usually presented in the form of

da/dN versus A fFig. 2a). From linear elastic fracture mechanics solutions

A of finite width cracked plates, one can determine AK versus x (Fig. 2b) being

of the form:

AK AS,1-a F(S- ) :Q) (10)

For a finite width center cracked plate, the correction factors h.Kve the form,

F a.
W F;C G F(Q) 1 (11)

' However, for small cracks gro.ing out of notches, this is not a suitable repre-

sentation due to tne notch root plastic field. Emery's (25) solution can be

used tc represent this phenomenrn and has been employed by Dowling (17).

7,F..



Another method accounting for this, proposed by Miller and Smith (15), con-

siders an equivalent crack length, yielding:

AK sv-4 .o + 7.69

(12)

with the provision that,

a < O.13VDp

in other words, that the crack is small. Note that D is the notch width and

P the notch root radius. This formulation was employed to estimate AK for

$ small cracks. As the crack.s grow out of the notch, linear elastic fracture

mechanics was employed to estimate AK. With this information one can con-

struct a curve with dimensions AK versus x. Combining AK versus x, and da/dN

versus AK results in a curve with dimensions da/dN versus x (Fig. 2c).

For the intersecting rate analysis, the strain cycle fatigue data and

crack growth data are in a comparable form. Utilizing these assumptions,

initiation and propagation rates were calculated for each element and compared

.4 (Fig 3). When the propagation rate exceeds the initiation rate for a given

"element, the location of the previous element is designated ai. Initiation

life is defined as the fatigue life of the element at x a. Knowing Kc

A. from crack growth data, one may determine af, the final crack size. Integrating

Eq. 5 from ai to af provides an estimate of the propagation life. Combine the

two for a total life estimate.

The minimum life analysis assumes various values of ai. For each x, the

initiation life is defined as before, and integration of Eq. 5 from that speci-

fic x to aft provides a Propagation life estimate. Again these two are combined

for a total life estimate, and the assumed x that results in the minimum total

life is denoted as a..

I - 84,>V
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3. Implications of the Assumptions

The use of Miller and Smith's formulation for small cracks in the

formulation of AK includes the influence of geometry in the propagation

model. Forman's equation incorporates load ratio, therefore mean load,

into the calculation of da/dN. The differing stress and strain distri-

butions result in the initiation length and life being a function of

notch geometry. Local mean stress and strain range were used in the

calculation of fatigue cycles to failure and, thus, were also included

in the initiation concept. The material properties incorporated through

the Forman propagation model and strain-life calculations allow the

material to affect the results also. It is through these considerations

that ai becomes unique for a given material, nominal load range, load

ratic, and geometry with respect to the initiation and propagation

models employed.

. I |
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SECTION III
EXPERIMENTAL PROGRAM

An aluminum alloy, 7075-T651, that was supplied by Alcoa was used in

this investigation. All specimens were machined so that loading was in the

rolled direction of the 0.25 inch thick plate.

Smooth fatigue specimens O.200"in circular cross section with a gage

length of 0.50 in were used to generate the baseline fatigue data. Some of

these specimens were initially overstrained for ten cycles of +1% followed

by 25 cycles of linearly decreasing strains to zero. Side notched plate

samples 2.0 in wide and 0.08 in thick were employed to obtain da/dN data

at a load ratio of 0.1, while center notched specimens of similar dimen-

sions were used at a load ratio of -1.0. An incremental polynomial data

reduction program generated the Forman equation constants for both load

ratios and the Paris constants at a load ratio of 0.1. The results are

tabulated in Appendix A. All tests were conducted on closed loop electro-

hydraulic test systems.

To compare with predicted values of life, center notched plate speci-

mens with thickness of 0.08 in, width of 2.00 in, notch width of 0.5 in,

and notch radii varying from 0.25 in to 0.015 in, were tested under constant

cyclic load at R ratios of -1.0 and 0.1 (Figs. 4 and 5). Maximum nominal

stress levels varied from 5 ksi to 30 ksi.

Optical observations were periodically made with a 40X traveling micro-

scope to detect the first visible crack. Small cracks of the size of the

predicted ai values could not be observed due to microscope resolution.

" Further observations were made of crack growth on some specimens after'slz-

able cracks had developed to ensure that they followed the trends predicted

from the crack growth data.

,10



Finally some tests at R = -1.0 using 3pecimens of similar dimensions were

incrementally overloaded at the start of the test to avoid mean residual

stress effects. They were then cycled to failure at constant amplitude.

Total lives for cumpletr separatieo, of all specimens are tabulated in

Tables l and 2.

i ~
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SECTION IV
DISCUSSION

Analytical predictions of life for constant amplitude loading using

the intersecting rate method, the minimum life method, and Neuber analysis

for the various geometries are presented in Tables 3 through 7. Total life

for predicted and experimental results versus stress level for each geometry

are graphically presented in Figs. 6 through 15 for the minimum life approach

since the two methods of analysis give essentially the same results.

The value of a* = 0.02 in., used in Peterson's relation, was obtained

from the literature (26). The technique based on Neuber's rule does not

give adequate life predictions, especially for sharp notches.

Table 8 and Figs. 16 and 17 present percentage of the total life that

is due to initiation versus nominal stress level. Sharp notches and/or

high loads cause the life to be propagation dominated, while the life for

blunt notches and/or low loads tend to be mostly initiation dominated.

Table 9 lists calculated aivalues versus nominal stress level, and

these results are presented in Figs. 18 and 19. Predicted values for a.

range between 10 to 10 in. The value of a8 exhibits a definite depen-

V dence on R ratio, load rsnge and geometry. This indicates that one cannot

arbitrarily assign a constant initiation crack size for a given material

L or geonetry.

It should also be noted that a small value of a1 does not infer a short

or a long initiation lite. Rather it indicates a transition in mode of

* analysis is necessary. Local strain Qradient, mean stresses, nominal stresses,

and material all combinp tu dictate the a value. It can be noted that blunter

4notches and loier load levels tend to give smaller initial crack sizes for

12



either load ratio. Since the method of calculating the notch strain

distribution to determine initiation life assumes that no crack is present,

it is reassuring that the calculated ai values are small, and the assumption

that the notch strain field dominates at small crack sizes is reasonably

valid.

A major point of controversy has been the definition of fatigue crack

initiation and propagation. These terms have been used rather !oosely and

could have varied implications. When used in this report, initiation does

not imply that there are no cracks or flaws present. Also the presence

of small cracks does not infer that a da/dN versus AK type description is

valid. Rather it is probably better to consider that there are two types

of data commonly available to describe cyclic damage; smooth specimen,

reduced to cyclic strain versus life data, and cracked plate, resulting

in da/dN versus AK curves. A notched member fits neither of these two

during its entire life. Portions of the total life may be adequately de-

scribed by one or the other depending on load ratio, load range, notch acuitŽ.

and previous fatigue damage. It is also unclear whether a crack of size ai

actually exists after the number of cycles referred to as Ni. At present,

it is probably best to regard ai as a conceptual crack that quantitatively

reflects a transition from smooth specimen damage description to a propaga-

I tion or cracked plate damage criterion in a notched member subject to cyclic

loading.

Initial incremental overloaded tests were conducted under the assumption

that the initiation life predictions would be more affected than propagation

dominated predictions. Table 10 lists and Fig. 20 illustrates the relation-

ship between the percentage of the life due to initiation and the percentage

13
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reduction in life due to an initial overloading. In general, it seems

that those cases with a large percentage of initiation life were affected

more by the overload than those with smaller percentages of ,alculated

initiation life.

Finally, in Fig. 21 the results of analytical predictions versus

experimental life are presented. For the most part between lives of 10

to lOQ cycles the data fall within a factor of two of the predictions.

Considering the range of notch acuity, load ratio, and load range, this

seems encouraging.

I

4
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SECTION V

CO*3CLUS ION

The correlation between the predicted and actual lives for the notched

members tested indicates that the concept of a • •narbitrary fatigue crack

size is a viable technique for predicting total fatigue lives in notched

members. The concept of ai provides a demarcation between smooth specimen

and cracked specimen types of damage evaluation. Many variables, including

geometry, material, and loading conditions influence the value of ai, so that

the technique may be applicable to a broad range of problems. This approach

seems more reasonable than assuming a constant value for initiated crack size.

For the intermediate cases where the life is approximately half initiation

and half propagation, an accurate value of ai is necessary to obtain a reason-

able estimate of the combined total life.

Another advantage to this method is that the need to determine Kf, which

is used in most techniques for smooth specimen simulation of notched members,

is eliminated. The fatigue notch factor, K., requires extensive fatigue

testing of smooth and notched members. It should be noted that, perhaps, ai

concepts could be applied to infer approximate values of Kf and a* without

resorting to notched specimen testing.

Although no variable loading cases, other than initial overload, have

been treated, it seems reasonable to extend the ai concept to predict life

under block type loading. Using constant amplitude smooth specimen data

and cracked plate data, initiation damage/block as a function of x in Fig. 1

"could be calculated using rainflow counting, Miner's rule, etc. In a manner

similar to that followed by Socie (12), the crack advance/block as a function

t:i of x in Fig. 1 could also be estimated. One could then determine and ai value

and the corresponding number of "initiation blocks" and "propagation blocks.0

;P* 15
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APPENDIX A

BASELINE MATERIAL PROPERTIES

FOR

IAl 7075-T651
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MECHANICAL PROPERTIES OF Al 7075-T651

Monotonic Properties
3

Elastic Modulus E 10 x 10 ksi (68750 MPa)

Yield Strength, 0.2% Offset S y 77.9 ksi (537 MPa)

Tensile Strength S 85.4 ksi (589 MPa)
True Fracture Strength af 95.1 ksi (656 MPa)

Strength Coefficient K 87.3 ksi (602 MPa)
Percent Reduction in Area %RA 13.5%

True Fracture Ductility _f 0.1451

Strain Hardening Exponent n 0.017

Cyclic Properties

Fatigue Ductility Coefficient Ef 0.158

Fatigue Ductility Exponent c* -0.83

Fatigue Strength Coefficient aj 114.8 ksi (792 MPa)

Fatigue Strength Exponent b -0.04

Cyclic Yield Strength, 0.2% Offset S' 78.5 ksi (541 MPa)

Cyclic Strength Coefficient K' 100.7 ksi (694 MPa)

Cyclic Strain Hardening Exponent n' 0.048

"Propagation Properties 7

I Paris Crack Growth Coefficient C' 1.18 x 10

Forman Crack Growth Coefficient C" 1.01 x 10-

Paris Crack Growth Exponent m 2.94

* Forman Crack Growth Exponent m' 2.36

i Fracture Toughness K 40 ksi/iTn (43.9 MPamv-)

* Indicates slope for high levels of plasticity

",~ 19
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CONSTANT AMPLITUDE FATIGUE TEST RESULTS ON SMOOTH SPECIMENS

Material: Al 7075-T651 tested in rolled direction
Strain control unless otherwise noted.)

Strain Fatigue Stress Plastic Strain ModuIuSTof
Specimen Amplitude Life Amplitude Amplitude Elasticity

No. Ae/2 Reversals Ao/2,ksi(MPa) Asp/2 E,ksi(MPa)

lA 0.010 590 78.3 10,000
S_ _ _(540) 0.00217 (69,400)

78.5 l0,O00O._____ Ol____ 0 ___5___ ( 541 ) 0. 00224 (960S0.010 5,00
(543) 0.000213 (69,100)

11 0.0075 2,874 72.9 10,100
(503) 0.000312 (70,000)

12 0.0075 2,900 I736 10,200
(507) 0.000297 (70,500)

2* 0.0075 1.964 74.7 10,400
(515) 0.000309 (71,700)

13 0.005 ,7,300** 50.8 0,100
37,600** (350) --- (70,000)

2A O.OJ5 36,300** 48.8 9,76037,600** (337) (67,300)

7 0.005 36,300** 51.6 1 0,300, 700036,600** (356) (71,200)

40.4 10,10015 0.004 106,100 (279) --- (61,600)

l0 0.004 97,300** 40.8 10,2101.106,900 (281) (70,400)

120,400** 41.8 10,400
2000124,800 (288) (72,000)
6 '" 34.7 1-- 10,200
65 0.0034 833,000 (239) (70,100)

. 35.1 10,20063 0.0034 905,000 (242) .. (70,100)

9,800
59 0.0029 2,499,000 (197) (67,8000

10,100
29.2 (69,600)

•5 53 0.0029 3,002,000 (201) (960

*Failed by knife edge of strain gage.•.:. **Ten percent load drop in strain controlled tests when recorded
***Load controlled tests 20
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OVERSTRAIN* FATIGUE DATA ON SMOOTH SPECIMENS

Material: Al 7075-T651 tested in rolled direction

STABLE or HALF-LIFE VALUES
Strain Fatigue Stress Plastic Strain Modulus of

Specimen Amplitude Life Amplitude Amplitude Elasticity
No. Ae/2 Reversals a/2,ksi(MPa) Ac /2 E,ksi(MPa)p

50.1 p10,300

89 0.0049 30,900 (345) --- (70,800)

50.1 10,300
56 0.0049 29,300 (345) (70,800)

50.2 10,200
55 0.0049 17,000 (346) (70,300)

40.1 10,200
51 0.0039 81,100 (276) --- (70,100)

39.8 10,20071 0.0039 77,400 (247) --- (70,300)

39.7 10,200
58 0.0039 76,100 (274) --- (70,100)

29.7 10,200
57 0.0029 213,000 (205) --- (70,100)

29.7 10,200
53 0.0029 217,300 (205) --- (70,500)

.... 29.7 10,100
66 0.0029 316,000 (205) --- (69,800)

*Initially overstrained 10 cycles at +0.01 followed by 25 cycles of linearly

decreased strain to zero.

.1A'
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APPENDIX 2
LOW CYCLE FATIGUE CONCEPTS

The most common form of the strain-life relation expressed in Eq. I is

commonly applicable to most steels. The term, af/E(2N.)6, represents the

elastic strain amplitude and 64 (2Nf)c the plastic strain amplitude. On log-f

log coordinates of life versus strain amplitude, the elastic and plastic

strain amplitudes have a linear relation with life and the exponents b and c

are the slopes. When plotting the strain-life data for Al 7075-T651 in a

similar fashion, it was observed that the log-log linear behavior occured

within certain bounds of life, not the entire life range. Plastic strain

amplitudes were negligible at lives greater than about 1000 cycles.

For computational purposes it was decided to fit an equation of the form
* b' * c'

4 = Of (2Nf) + Cf (2Nf)
2 E E

in short life region where plastic behavior was appreciable. The values of

and Ef are the intersection of the Ae/2 axis at a life of one reversal for

:4. the linear relations in this region.

In the long life region it was found that a single Basquin type relation

was sufficient.

"" a Of b"•I - E (2Nf)

Again, d-* 3btainzd by extrapolating the linear relation in the long life

region back to a life of one reversal. It should be noted 4 #4* and b' V bt".

To avoid any discontinuity, the equations were set equal to one another

to find the life that satisfied both. This was close to 1000 cycles, and

served as a demarcation between the two descriptions.

22
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